
Progress Report - Year #2

Automated Extraction of Flow Features

NASA Marshall Space Flight Center Grant #NAG84872

Robert Haimes
Department of Aeronautics 8.1 Astronautics

Massachusetts Institute of Technology
haimes@mit .edu

Juiy 1, 2004

1 Introduction

Computational Fluid Dynamics (CFD) simulations are routinely performed as part of the design
process of most fluid handling devices. In order to efficiently and effectively use the results of a
CFD simulation, visualization tools are often used. These tools are used in all stages of the CFD
simulation including pre-processing, interim-processing, and post-processing, to interpret the results.
Each of these stages requires visualization tools that allow one to examine the geometry of the device,
as well as the partial or final results of the simulation. An engineer will typically generate a series
of contour and vector plots to better understand the physics of how the fluid is interacting with the
physical device. Of particular interest are detecting features such as shocks, recirculation zones, and
vortices (which will highlight areas of stress and loss). As the demand for CFD analyses continues
to increase the need for automated feature extraction capabilities has become vital.

In the past, feature extraction and identification were interesting concepts, but not required in
understanding the physics of a steady flow field. This is because the results of the more traditional
tools like; iso-surface, cuts and streamlines, were more interactive and easily abstracted so they
could be represented to the investigator. These tools worked and properly conveyed the collected
information at the expense of a great deal of interaction. For unsteady flow-fields, the investigator
does not have the luxury of spending time scanning only one "snapshot" of the simulation. Au-
tomated assistance is required in pointing out areas of potential interest contained within the flow.
This must not require a heavy compute burden (the visualization should not significantly slow down
the solution procedure for ceprocessing environments). Methods must be developed to abstract the
feature of interest and display it in a manner that physically makes sense.

1

2 A Secondary Flow Surface

2.1 Definition

The concept of secondary flow in turbomachinery is not well ‘dined, but commonly referenced.
Some attempts at rigorously defining this idea include:

0 ... component of absolute vorticity in the direction of the relative streamline [Hawthorne, 19741

e Secondary flow in broad terms means flow at right angles to the intended primary flow [Cump
sty, 19891

e Due to viscous effects, endwalls divert primary flow produced by blades and vanes, to give rise
to what has come to be called secondary flow [Bradshaw, 19961

Of the three definitions listed above only [Cumpsty, 19891 provides a definition that could be made
operational. What is required is the notion of primary flow, which we can define. Unfortunately by
the time we get a CFD solution the notion of “intended is lost.

The desire to view perturbations from the primary flow direction can give insight into the viscous,
reverse flow and vortical effects that deviate from the design. To this end it is obviously desirable to
be able to generate 2D vector plots that display the secondary flow given a traditional CFD solution.

Secondary flow plots are usually displayed in a passage between blades or just downstream from
the trailing edge. The arrows are generated from a frame of reference that is relative to the passage
in question (i.e. absolute for ked rows and moving for rotors). This obviously points to a difficulty
in areas between stators and rotors: what is the appropriate frame of reference?

2.2 Algorithm

It would clearly he desirable to have a scheme that could maximize the primary flow through a
constructed surface. This could be done by defining a pivot point in the channel that reflects the
some centroid of the passage or flow. A surface that goes through the point can then be generated.
By adjusting the position of this surface the best fit can be found. This surface can then be used to
view the secondary flow by projecting the vector field data onto the surface.

2.2.1 Primary Flow definition

The goal here is to calculate the mass-averaged quantities in the channel. This should be done on a
grid plane or a cut through the passage that is orientated so that all bounds of the cut are walls (if
possible). The following can be done with either a plane (all surface facets have the same normal n)
or an analytical surface where the normal for cut facets can change.

2

,

Compute surface integrals:

where M is the mass-averaged flux, qo is the mean velocity and 20 is the mass-averaged center
of the flow.

2.2.2 Newton-like Iteration to Maximize Primary Flow

By selecting various cuts that pass through XO we can adjust the normal (in the case of a simple
plane) in an iterative loop so that we maximize qzt (the velocity perpendicular to the plane):

n'= lqol

Note that new surface integrals are recomputed during each iteration. This will also change the
position 20.

Using a planar cut this technique takes about 3 to 4 iterations to converge (i.e. the normals
returned do not differ by some small factor). This Newton-like convergence is most always seen
unless the planar cut is adjusted so that a new portion of the flow field is exposed.

When converged, this provides a view of the data that displays secondary flow when the normal
velocity component is removed.

2.3 Discussion

In practice this algorithm works well but did require a number of operational adjustments. These
included:

2.3.1 Passage of Interest

The fast cut algorithms are based on Marching Cubes and are performed on a 3D element at a time.
The result is a set of disjoint polygons that reflect the portion of the surface that cuts through the
cell. The notion of where in the domain the fragments come from is usually lost. So if the simulation
contains more than a single passage the cut data can easily contain fragments from elsewhere in the
simulation. This will corrupt the primary flow calculation in that we are no longer focused on a
single passage.

3

The solution is to reconnect the fragments into complete (and bounded) surfaces. Once this is
done a seed point can be located within the bounded surfaces so that one can be selected. Only
those polygons that are within the selected region are used in the calculations.

The cut algorithm used constructs the surface in a Finite-Element sense (that is, a list of nodes
that reflect the 3D edges being cut is constructed and the polygons refer to indices in that list). The
reconnection is performed via a polygon side-matching algorithm based on the indices (not floating-
point locations). This is unique and robust. Any side that is seen by two polygons is interior to the
region. A side with only a single polygon is bounding the region.

2 -3.2 Multi-block simulations

In multi-block simulations the volumes represented by the blocks can abut or overlap. The individual
cell definitions are usually block specific so that even if the blocks maintain a larger contiguous
volume, it is usually not apparent by the time one looks at the fragments from the Marchzng Cubes
resu!ts. WEE recnmecting the regicm the res~!ts wi!! reflect the b!c?& bour?dariez and not the
--t....l L,,...A.. ..C+L- -..+ TI.,. r--:,...n ..-.-.A +- L,. -l..-,.,I I.-.& *--..*I.....
L L L U U - ""Ull- "I "IIC LU". * l lC 1G61"IW IlCCU li" UG p-r;u UaLn b " ~ G b l l C 1 .

When performing streamlining, it is traditional to use the "IBlank" data to inform the software
how the blocks are connected. When one pierces a cell on a face where the "IBlank data indicates
that a jump to another block is required, the "IBlank" index contains the accepting block. Initially,
this data was used to attempt to flood the region from the target surface fragments to connecting
blocks. This was found to be unreliable.

A much more expensive technique was developed. This involved producing a bounding-box
around each region as a first step. All regions (that have not been included) and have bounding
boxes that overlap the start region are examined. Each point on the exterior of the start region is
compared to all fragments of the candidate regions. If it is found that any point is interior, then the
new region is considered part of the calculation and this process is then recursively applied where
this candidate becomes the start region.

In this way the seed point fills all connecting and overlapping areas and the calculation can
proceed on that "passage".

2.3.3 Tip leakage simulations

When performing the secondary flow algorithm on a simulation that displays tip leakage there is
a natural connection between passages. With the algorithm described above there will be flooding
into other passages. This will corrupt the primary flow calculation.

This problem has been taken care of if the simulation is multi-block and there are individual
blocks that represent the tip flow regions. The flooding can be "dammed" by informing the technique
not to use certain blocks as candidates.

4

2.3.4 Frame of reference

In multi-stage calculations care needs to be taken so that algorithm sees data in a consistent frame
of reference. This means that when looking at the secondary flow in a rotor, all velocity field values
should be in the rotating frame. It is important that the data in the stators be transformed so that
the technique does not see any discontinuities in the velocity field.

This then means that if one were to traverse the machine from upstream to down that there will
be a number of changes of reference. These should be done while the resultant planar cut is in the
zone between blades.

2.4 API addition to FX

The Feature extraction toolkit FX contains an infrastructure that can handle the various different
methods that a CFD solution can be discretized. This toolkit, unlike most visualization systems, is
lightweight because no drawing and/or GUI functions are supported. In general, the input is the
CFD sn!ut.i~n an? ni!t.piit. is varioiis forms of Zeornetxy.

2.4.1 FX-MeanFlow

FX_MEANFLOW(XPOS, VNORM, DAM)
This subroutine given the start position and plane normal computes the mass-averaged “center“ of
flow and the mass averaged velocity.

float XPOS[3]

float VNORM[3]

int *DAM

On input the position that sets the plane given the normal
VNORM. On output, the mass averaged position on the pla-
nar cut is returned.

On input the normal that sets the family of planes to use to
produce the cut. On output VNORM is filled with the mass
averaged velocity through the cut.

Pointer to the status of each block (for multi-block cases) to
act as a “dam” for the flooding procedure. Zero indicates that
flooding through the block is OK, a one is the flag to NOT use
this block. NOTE: may be NULL to specify no “damming”.

2.5 Status

An extended abstract on this work has been submitted to the 2005 AIAA Aerospace Sciences Meeting
(at Reno, NV). The disposition is not yet known.

This feature technique has also been passed on to General Electric. The people responsible for
the visualization codes that both GE Aircraft Engines and GE Power Generation use are located
at GE Global Research. Stuart Connell manages this effort and he has incorporated the Secondary
Flow finder into NPLOT3D (their visualization 7 ’ ~ ~ r k h ~ ~ 7 7 code). The initial feedback is that this
feature is useful.

5

3 Field Interpolation

There was an effort at MSFC to be able to accurately interpolate the data from one mesh onto
another where the nodal positions do not match. This interpolation can be performed in a number
of ways (this is due to the fact that finite volume/finite difference CFD does not actually define a
cell-based interpolant). If the interpolation is done without some accuracy, then the solution on the
target mesh may be far from converged (even if the source solution was converged and the geometries
are the same). This situation becomes worse in meshes dominated by boundary layer stretching -
errors in these regions are easy to generate and have a significant effect.

The interpolation routines used for streamlining and unsteady particle tracing were applied to
this mesh-t&mesh problem with great success.

4 Rendering of Higher-Order Finite Elements

Numerical met.hn& are widely i~wd thrni~ghoilt aradlemie and indi1st.ry t.o solve physical problems

when experimental data is difficult to obtain. The details of these methods can vary greatly, but they
all essentially solve a set of governing equations by discretizing the domain of interest and solving
an analogous formulation at the discrete points or nodes. Once a solution has been generated for
these nodes, then data over the entire domain can be obtained by interpolation. The simplest way
to interpolate is to assume linearity within each cell based on the vertices that support that element.
There are a number of ways available to then view this data, since most visualization techniques are
based on the assumption of linear interpolation. However, there are many situations in which it is
advantageous to solve the discrete equations using a non-linear basis or higher order elements. This
can mean using anything from the standard polynomial Lagrange basis to a scheme as complicated
as a hierarchical basis or spectral elements. One obvious difficulty with using higher order numerical
methods is that there is no simple way to visualize the data in its native form (since most current
visualization software uses a linear basis). This renders higher order methods much less useful.
Understanding of numerical results and new insight is often only possible when one can accurately
visualize the massive amounts of data produced.

Accurate rendering of nonlinear data cannot be performed efficiently using only the standard
OpenGL API, since all OpenGL primitives are inherently linear. Higher order data can be interpa
lated and rendered quite simply and quickly by utilizing the flexibility of modern graphical processing
units (GPUs). In addition to rendering surfaces, one important technique used in scientific visual-
ization is the generation planar cuts through 3D field data. This can be accomplished through a
combination of selective refinement of the elements and accessing the programmable shaders inside
the GPU.

4.1 Discontinuous Finite Elements

One popular group of numerical techniques, the Finite Element Methods (FEM), are particularly
convenient when dealing with complex geometries or unstructured computational meshes. The FEM

6

simplifies the solution scheme by mapping every element in the mesh to a master reference element,
and then scalar interpolation can be performed using shape functions as a basis.

When rendering continuous data, neighboring elements share both the location and field data
of common nodes. The use of collected primitives (polytriangles, quad meshes and etc.) can speed
up the display time since the support data needs to be passed along the graphics pipeline fewer
times. However, the direct goal of this research was to visualize flow solutions generated using the
Discontinuous Galerkin (DG) Method. As such, any scheme developed should be able to naturally
handle discontinuities (at element faces) in the scalar fields being visualized. The simplest way to
accomplish this is for each element to independently store data for all of its basis nodes. Even
though the physical location of shared nodes is the same between neighboring elements, nodes must
be respecified for each element in which they appear. The goal is to have a method that allows for
easy handling of both continuous and discontinuous data with the acknowledgement that there will
be some lose of the speed benefits in comparison to the use of collected primitives for continuous
data.

4.2 Visualization Tools

The status of the implementation of commonly used visualization took for higher-order elements is
listed below.

4.2.1 Surhce Rendering

The coloring (and lighting) of the surface patches is done in an accurate manner. What is not
properly handled, at this point, are curved triangles. OpenGL only rasterizes planar fragments,
therefore in order to precisely render curved patches, a method to cover the shadow of the patch is
required. This geometric fragment is view dependent and therefore changes as the view matrix is
adjusted. This portion of the algorithm has not been completed.

What has been accomplished is that a p l , pz and p3 scalar evaluators have been implemented.
Unlike OpenGL where interpolation is performed in color space, here proper scalar interpolation
is computed in the graphics hardware and the color applied from a colormap stored in texture
memory. Once the color has been found, the same interpolation can be performed on the geometry.
This can give an accurate normal on the curved patch. This normal is the one that then gets applied
for the lighting calculations. Also, the depth is properly adjusted (and not taken from the linear
interpolation of the fragment). This does a remarkably good job in providing a visual representation
of the patch even though it is based on the linear raster positions.

4.2.2 Planar Cuts

A scheme to properly render cutplanes has been implemented. Please see the attached paper Ren-
dering Planar Cuts Through Quadratic and Cubic Finite Elements. This paper has been accepted
to the IEEE Visualization conference and will be presented in October 2004.

7

4.2.3 Iso-surfaces

Preliminary efforts have begun. The algorithms to render each type of intersection for linear elements
are the same as with planar cuts. The crucial difference is that iswsurface will, in almost all cases,
be guaranteed not to be planar.

However, it may be possible to render the isosurface with scalar value, s*, by bounding it with
linear primitives. Based on screen position, z,, of each pixel on the bounding shadow, the depth
is adjusted until the point on the isosurface, 2, is found such that x, lies on top of z (i.e. z and
2, have the same screen coordinates but different depths). To find z, 1s - s*l is first minimized by
performing a search of points inside the element that lie beneath zs, then the fragment can rejected
or drawn based on whether or not s = s*. Performing this search would be relatively expensive,
so acceptable values of s will lie close to s* within some bounds set by the accuracy of the search.
Under some viewing transforms, the isosurface can curve behind itself, which means there can be
multiple solutions, 2, that all lie on top of 2,. In this case, the several solutions should be compared
using the depth test to determine which one is displayed.

-- How are the bounding sh&ow primitives determined to render the isosurface? Tile h e s ol' &e

congruent tetrahedron used to generate the cutplane shadow would certainly cover the isosurface
intersection, since it captures the entire element by design. But using those triangles could produce
many extraneous fragments.

4.2.4 Steamlines

This has not been started. For continuous data higher order interpolation is not a problem. The
normal streamline and unsteady particle tracer is only a function of the velocity field (at optionally
its gradient) at requested points. FEM is designed to provide accurate interpolation. Routines are
required for each type of element supported in the simulation.

There is a problem for DG simulations. Many of the numerical techniques used for parti-
cle/streamline integration assume continuous field data. It is not clear what will happen to the
results when there are jumps seen at element boundaries. Those techniques like variable step Runge-
Kutta integration will fail. In fact, the concept of a streamline in a discontinuous simulation may
not be well defined.

4.3 Status

The student performing much of this effort, Michael Brasher, will be graduating with his Masters
degree at the end of the summer.

8

to accomplish this is for each element to independently store data
for all of its basis nodes, similar to [8]. Even though the physical lo-
cation of shared nodes is the same between neighboring elemenis,
nodes must be respecified for each element in which they appear.
The goal is to have a method that allows for easy handling of both
continuous and discontinuous data with the acknowledgement that
there will be some lose of the speed benefits in comparison to the
use of collected primitives for continuous data.

3.1 Reference Element Interpolation

In general, a hiangular element T has a scalar interpolant of order p
and q degrees of geometrical freedom. The degrees of freedom de-
termine if and how the sides of T are curved, and the order of inter-
polation determines how many nodal values of the scalar function
are needed to specify the interpolant. For example, a p3q2 trian-
gle would have a cubic polynomial scalar interpolant and quadratic
geometry.

Using the Lagrange basis, every element in the mesh can be
mapped to a reference element. The reference coordinates, E , are
aligned so that the component & is 1 at vertex i of the reference el-
ement and 0 at all other vertices. Note that there are 3 reference co-
ordinates in 2D and 4 reference coordinates in 3D. The extra degree
of freedom is removed by requiring that the coordinates identically
suni io i, Le. X I ;I = I. The nod& shape fiinaims GI are defined so
!h2! at ezch node nj’

1 i f i = j
q i i (n j) = { 0 i f i # j

Given a scalar function with nodal values s; at node n;, the value
of the scalar interpolant .(e) at a point 5 is given by:

It is convenient to scale the nodal values so that the scalar inter-
polant is contained in s E [O: I]. Once the value of the scalar in-
terpolant is found at a point, the color at that point is defined by
some arbitrary colormap. One standard choice of a colormap is the
spectral colormap shown in fig. 1.

0.0 0.25 0.5 0.75 1 .o
Figure 1: Spectral Colormap

In addition to nonlinear scalar data, the geometry of the element
can be curved. Only the coordinates of each node in physical space,
p; = { .Xi ,Y; ,Zi} , need to be specified, and then the geometry of the
element is interpolated in the same manner as the scalar field using
eq. 2. As a matter of practice in computational meshes, there will
be q > 1 elements conforming to the curved boundaries and linear
q = 1 elements on straight boundaries and in the interior. At times
q > 1 interior elements may be seen when there is a stretched mesh
near a c w e d boundary. This ensures positive volumes and well-
behaved interpolation.

3.2 Dimensional Hierarchy

Given physical coordinates at the nodal points, the px reference el-
ements map to some curved region in physical space, called a px
tetrahedron in 3D, a px triangle in 2D, and a px line in 1D. The
four faces of a px tetrahedron can be mapped to the 2D reference
element, so each face can be described as a px triangle. Similarly,
the three edges of a px triangle can be described as a p r line. Thus

Figure 2: p2 Shader Figure 3: p3 Shader Figure 4: pa Shader

the simplicial elements form a dimensional hierarchy where a px
simplex of dimension n contains px simplices of dimension n - I .

This concept of a dimensional hierarchy is not restricted to the
faces and edges. Any planar polygon in the 3D reference space can
be triangulated into curved triangles, and any line segment in the
2D reference space can be described as a higher order line. How-
ever, not all curved regions can be described as a px line, triangle, or
tetrahedron. Any nonlinearity in the reference space will be com-
pounded in the mapping, and the resulting interpolation will not be
Px.

4 SHADING PARAMETRIC ELEMENTS

7~
111 order tu visudize a parametric element with s d a r vdiies, s,, ai
e c h node, eq. 2 most be imp!emented in cnme manner. OpenGI.
alone can only do this by refining the triangle or generating a texture
map. Both of these methods become extremely slow as the num-
ber of triangles increases. An alternative is to use the programma-
bility in the GPU exposed by graphics languages like Cg. This
is where great performance gains can be obtained. The GPU can
inherently use the parallelism in these operations because the ras-
terization phase generates a pixel at a time (with no dependence on
neighboring pixels). The processor can parcel out each pixel in the
fragment to the number of raster engines available in the specific
graphics hardware.

Eq. 2 can be implemented in a fragment shader by defining tex-
ture coordinates at each vertex as the vertex’s position in reference
space, f , and then evaluating the shape functions in the fragment
shader. The results of this shader on one triangle is shown in fig. 2.
Figs. 2, 3, and 4 show the results for the p2, p3, and p4 shaders
respectively. Note that linear coloring (Gouraud shading) would
produce a constant color triangle for each case.

4.1 Performance

N u m D s O l T W p

Figure 5: Performance of p2 Interpolation

Figure 8 Triangular p2 Cut w/
Shadow

Figure 9: Triangular p2 Cut
Shaded

Figure io: biuiripie pz CUTS Figure ii: Face Oniy p2 Cur

like fig. 10 and fig. 11, a significant portion of the shadow is eventu-
ally thrown away. This extra computational burden can be lessened
by using eq. 7 to selectively refine the element, and then applying
the shadow algorithm to each subelement. As shown in figs. 12
through 14, this hybrid sekcrive refinemenr (HSR) algorithm cor-
rectly renders the cutplane intersection while requiring much less
refinement than LSR would to produce the same level of accuracy.
Also notice that there is some amount of overlap between the shad-
ows, but the reduction in excess fragments more than makes up for
this redundancy.

6.5 HSR for 2D data

All elements found in the solution from a 2D flow solver can be
thought of as occupying a single plane in 3D space. A shadow that
lies in that plane can bound the 2D curved element. This shadow
primitive will be a linear triangle C that is congruent to the reduced
order triangle R of the element, as shown in fig. 15. This is an
extension of the method described in sec. 6.4 where the main dif-
ference when visualizing 2D data is in computing the bounds of the
element. The maximum value ofp'(<) for a 42 triangle face always
lies at the midpoint.

As with sizing the congruent tetrahedron for a 3D tetrahedral q3
element, the bounds used for a general 2D triangular 43 element are
looser than those actually necessary for elements used in a compu-
tational mesh. The bounds for sizing of for a general element
are:

1 . 3 p L if Pmin < 0, p- > 0 (Mixed)
& = (-0.316pmi, if Pnin < 0. pm = 0 (Nonpositive)

1.125~- ifp,;, 2 0 (Nonnegative)
(30)

For a 43 mesh, assuming that the edge is either concave or convex,
using:

" = { 1 . 1 2 5 ~ ~ ~ ifp,,,,>O (Convex) (31)
0 if p,;,, < 0, p- = 0 (Concave)

will ensure that C completely covers R.

Figure 12: One Hybrid Refinement

Figure 13: Two Hybrid Refinements

Figure 14: Three Hybrid Refinements

Figure 15: Congruent Shadow Triangle

7 APPLICATION TO FLOW SOLUTIONS

The method used to intersect finite elements with planar cuts de-
scribed in previous sections was developed with the goal of visual-
izing flow solutions on unstructured grids in both 2D and 3D. This
effort supports the work of Project X [4]. The 2D code solves the
Euler equations and the Navier-Stokes equations, while the 3D code
is currently only inviscid. The equations are discretized using DG
methods and solved using p multigrid with line smoothing.

6.084E-01

3.042E-01

- 1.1638-05

7.1 2D Viscous Navier-Stokes Figure 2 0 NACA0012 Wing Mach Distribution

The approach to solving the Navier-Stokes equations is the same as
the method to solve the Euler equations, except that the line smooth-
ing is modified to account for viscous diffusion in addition to con-
vection. The flow around a NACA0012 airfoil at 0" angle of attack
was solved using a grid containing 2264 plql triangles in the inte-
rior and the farfield, and 40 pi43 mangles on the airfoil. Fig. 16
shows the Mach number distribution, which clearly show both the
viscous boundary layer and the trailing wake. Fig. 17 shows a close

Figure 16: NACA0012 Airfoil Mach Distribution

view of the leading edge, while fig. 18 shows the shadow pixels
and outlines the elements. Fig. 19 shows an extreme close-up of
just two elements, which are fairly curved. Even at this size, the
curvature of the element is preserved.

Figure 17: Figure 18: Figure 19: Two E l e
NACA0012 Air- NACA0012 Air- ment Shadows
foil Curve foil Shadows

7.2 3D Inviscid Euler

The application of the 3D code is to a straight NACA0012 wing
with a span of 5 chord lengths. The grid used was generated from a
2D airfoil grid, which was then extrapolated into 3D. This produced
a tetrahedral mesh consisting of 91936 p291 interior and farfield el-
ements and 3536 p2q3 boundary elements around the wing. The
Mach Number distribution is shown along the surface of the wing
in fig. 20. Since the grid is fairly well refined around the airfoil, no
enhancement was necessary to approximate the shape, though the
depth and lighting were modified at each pixel in the fragment pro-
gram to better approximate the curved shape. The farfield boundary
forms a dome around the wing, as seen in fig. 21. Fig. 22 also shows
the position of the cutplane.

The vast majority of the elements in the grid are 91. so the stan-
dard marching cubes algorithm handles intersection. However, all
the elements that either have a face or an edge on the wing sur-
face are 93, so that they can accurately conform to the airfoil shape.

Figure 2i: Farfieid Boundary Figure 22: Cutplane ;&tion

A cut through these elements must be rendered using the shadow
method of sec. 6, using eq. 27 to generate the shadows. The curva-
ture at the wingtip is best handled with 1 level of selective refine-
ment, so this was used throughout. The cutplane position in fig. 22
was used to generate the following Mach cut in fig. 23:

Figure 23: Cutplane Through Mach Field

To provide a better sense of the element size involved, fig. 24
shows the outline of all the q 3 elements that were cut at the position
shown in fig. 22. Figs. 25 and 26 show the cutplane through the
leading edge, with all the shadow pixels shown in pink. Notice
that there is some overlap of the shadow primitives, but since these
pixels normally get rejected, this is never noticed by the viewer.

Fig. 27 shows the wingtip, with the cutplane at 3 locations ap-
proaching the tip. These cutplane positions were used to generate
images through the Mach field and are displayed in fig. 28. This
shows that the cutplane shadow method is able to correctly render
the planar intersection for even the fairly curved elements at the
wingtip.

8 EXTENSION TO ISOSURFACES

The discussion so far has focused on rendering planar cut intersec-
tions, and not on visualizing isosurfaces. The algorithms to render
each type of intersection for linear elements are the same, and in-
deed, the LSR algorithm should work for isosurfaces. The crucial
difference is that isosurface will, in almost all cases, be guaranteed
not to be planar.

Figure 2 4 NACA0012 Wing Boundary Elements

Figure 25: NACAOOi2 Leading Figure 26. A Few Element
Edge Shadows

However, it may be possible to render the isosurface with scalar
value, s*, by bounding it with linear primitives. Based on screen
position, x,, of each pixel on the bounding shadow, the depth is
adjusted until the point on the isosurface, x, is found such that xs
lies on top of x (].e. x and x, have the same screen coordinates but
different depths). To find x, 1s - s* 1 is first minimized by perform-
ing a search of points inside the element that lie beneath x,, then
the fragment can rejected or drawn based on whether or not s = s*.
Performing this search would be relatively expensive, so acceptable
values of s will lie close to s* within some bounds set by the accu-
racy of the search. Under some viewing transforms, the isosurface
can curve behind itself, which means there can be multiple solu-
tions, x, that all lie on top of x,. In this case, the several solutions
should be compared using the depth test to determine which one is
displayed.

How are the bounding shadow primitives determined to render
the isosurface? The faces of the congruent tetrahedron used to gen-

.,.

Figure 27: Cutplane Position
a t Wingtip

Figure 28: Cutplane Through
Mach Field a t Wingtip

erate the cutplane shadow would certainly cover the isosurface in-
tersection, since it captures the entire element by design. But us-
ing those triangles could produce many extraneous fragments. This
could be alleviated by combining the view-based refinement used
in [7] and the selective refinement of HSR to approximate the iso-
surface intersection.

9 CONCLUSION

Subdivision algorithms generate exponentially more subelements
as the refinement level is increased, and their performance is
directly tied to the number of vertices being processed. Pro-
grammable shaders leverage the flexibility of modem GPUs to effi-
ciently sample higher order data at each pixel in a powerful manner.
Visualizing planar cuts through parametric FEM elements simpli-
fies to knowing the reference coordinates at each pixel, and hav-
ing the ability to use that information to correctly render the scalar
field. The major obstacle is the limitation of having to use planar
primitives to generate pixels for the fragment shader. To overcome
this challenge, the HSR algorithm bounds the curved intersection
with a shadow primitive, which can then be manipulated in the
GPU. Some pixels will inevitably be discarded, and to minimize
this wasted effort, very coarse selective refinement can be used to
generate several shadow primitives that collectively cover the en-
tire intersection. Thus the HSR aigorithm provides an efficient and
l " l l C L l " l l L u L I I b U L v U IY p.YU"Cb U.." _II."".. p."...., -"I" "YY"

order FEM data.
C...--+:-..-l mn+hnA tn --nAsx,-a *-A c h o A a nl-nor m l t o thr,w,nh himher

e-* ."b"-'

10 ACKNOWLEDGEMENTS

The work presented here was partially funded by NASA grant
NAGS-1 872 (Suzanne Domey, technical monitor).

REFERENCES

[I] James H. Clark. A fasr algorithm for rendering parametric surjiieh.
Computer Science Press, Inc., 1988.

[2] Bemardo Cockbum and Chi-Wang Shu. Runge-kutta discontinuous
galerkin methods for convectiondominated problems. J o u m l of Sri-
entifr Computing, 16(3):173-261, September 2001.

[3] Randima Fernando and Mark J. Kilgard. The C<q Tutoris/: 7he Defini-
tive Guide to Programmable Real-7ime Graphics. Addison-Wesley,
Boston, Massachusetts, 2003.

[4] Krzysztof Fidkowski and David Dannofal. Development of a higher
order solver for aerodynamic applications. 42ndAIAA Aerospace Sci-
ences Meeting and Exhibit, AIAA 2004-0436, 2005.

[5] Mike Giles. Personal Correspondence, July 2003.
[61 B. Haasdonk, M. Ohlberger, M. Rumpf, A. Schmidt, and K. Seibert.

Multiresolution visualization of higher order adaptive finite element
simulations. Computing, 70(3): 181-204, June 2003.

[7] R. Khardekar and D. Thompson. Rendering higher order finite ele-
ment surfaces in bardware. Computer graphics and interactive tech-
niques in Austalasia and South East Asia, 2003.

[81 Andrea 0. Leone, Paola Marzano, and Enrico Gobbetti. Discontinu-
ous finite element visualization. In CRS4 Bulletin 1998. CRS4, Cen-
ter for Advanced Studies, Research, and Development in Sardinia,
Cagliari, Italy, 1998.

191 William E. Lorensen and Harvey E. Cline. Marching cubes: A high
resolution 3d surface construction algorithm Computer Graphics
(Proceedings of SIGGRAPH), 21(4): 163-169, 1987.

[IO] P. Solin, K. Segeth, and 1. Dolezel. Higher-Order Finite Nemenr
Methods. CRCPress, 2003.

[1 I] Luiz Velho. Simple and efficient polygonization of implicit surfaces.
J. Graph. Tools, 1(2):5-24, 1996.

[121 Luiz Velho, Luiz Henrique de Figueiredo, and Jonas Gomes. A unified
approach for hierarchical adaptive tesselation of surfaces. ACM Trans.
Graph., 18(4):329-360, 1999.

